Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36230775

RESUMO

Despite numerous efforts aiming to characterise glioblastoma pathology (GBM) and discover new therapeutic strategies, GBM remains one of the most challenging tumours to treat. Here we propose the optimisation of in vitro culturing of GBM patient-derived cells, namely the establishment of GBM-derived cultures and their maintenance at oxygen tension mimicking oxygenation conditions occurring within the tumour. To globally analyse cell states, we performed the transcriptome analysis of GBM patient-derived cells kept as spheroids in serum-free conditions at the reduced oxygen tension (5% O2), cells cultured at atmospheric oxygen (20% O2), and parental tumour. Immune cells present in the tumour were depleted, resulting in the decreased expression of the immune system and inflammation-related genes. The expression of genes promoting cell proliferation and DNA repair was higher in GBM cell cultures when compared to the relevant tumour sample. However, lowering oxygen tension to 5% did not affect the proliferation rate and expression of cell cycle and DNA repair genes in GBM cell cultures. Culturing GBM cells at 5% oxygen was sufficient to increase the expression of specific stemness markers, particularly the PROM1 gene, without affecting neural cell differentiation markers. GBM spheroids cultured at 5% oxygen expressed higher levels of hypoxia-inducible genes, including those encoding glycolytic enzymes and pro-angiogenic factors. The genes up-regulated in cells cultured at 5% oxygen had higher expression in parental GBMs compared to that observed in 20% cell cultures, suggesting the preservation of the hypoxic component of GBM transcriptome at 5% oxygen and its loss in standard culture conditions. Evaluation of expression of those genes in The Cancer Genome Atlas dataset comprising samples of normal brain tissue, lower-grade gliomas and GBMs indicated the expression pattern of the indicated genes was specific for GBM. Moreover, GBM cells cultured at 5% oxygen were more resistant to temozolomide, the chemotherapeutic used in GBM therapy. The presented comparison of GBM cultures maintained at high and low oxygen tension together with analysis of tumour transcriptome indicates that lowering oxygen tension during cell culture may more allegedly reproduce tumour cell behaviour within GBM than standard culture conditions (e.g., atmospheric oxygen tension). Low oxygen culture conditions should be considered as a more appropriate model for further studies on glioblastoma pathology and therapy.

2.
Cells ; 11(18)2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36139418

RESUMO

For many years optimal treatment for dysfunctional skeletal muscle characterized, for example, by impaired or limited regeneration, has been searched. Among the crucial factors enabling its development is finding the appropriate source of cells, which could participate in tissue reconstruction or serve as an immunomodulating agent (limiting immune response as well as fibrosis, that is, connective tissue formation), after transplantation to regenerating muscles. MSCs, including those derived from bone marrow, are considered for such applications in terms of their immunomodulatory properties, as their naive myogenic potential is rather limited. Injection of autologous (syngeneic) or allogeneic BMSCs has been or is currently being tested and compared in many potential clinical treatments. In the present study, we verified which approach, that is, the transplantation of either syngeneic or allogeneic BMSCs or the injection of BMSC-conditioned medium, would be the most beneficial for skeletal muscle regeneration. To properly assess the influence of the tested treatments on the inflammation, the experiments were carried out using immunocompetent mice, which allowed us to observe immune response. Combined analysis of muscle histology, immune cell infiltration, and levels of selected chemokines, cytokines, and growth factors important for muscle regeneration, showed that muscle injection with BMSC-conditioned medium is the most beneficial strategy, as it resulted in reduced inflammation and fibrosis development, together with enhanced new fiber formation, which may be related to, i.e., elevated level of IGF-1. In contrast, transplantation of allogeneic BMSCs to injured muscles resulted in a visible increase in the immune response, which hindered regeneration by promoting connective tissue formation. In comparison, syngeneic BMSC injection, although not detrimental to muscle regeneration, did not result in such significant improvement as CM injection.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Animais , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Fibrose , Inflamação/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Músculo Esquelético
3.
Cells ; 10(5)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925059

RESUMO

Mesenchymal stem cells have generated a great deal of interest due to their potential use in regenerative medicine and tissue engineering. Examples illustrating their therapeutic value across various in vivo models are demonstrated in the literature. However, some clinical trials have not proved their therapeutic efficacy, showing that translation into clinical practice is considerably more difficult and discrepancies in clinical protocols can be a source of failure. Among the critical factors which play an important role in MSCs' therapeutic efficiency are the method of preservation of the stem cell viability and various characteristics during their storage and transportation from the GMP production facility to the patient's bedside. The cell storage medium should be considered a key factor stabilizing the environment and greatly influencing cell viability and potency and therefore the effectiveness of advanced therapy medicinal product (ATMP) based on MSCs. In this review, we summarize data from 826 publications concerning the effect of the most frequently used cell preservation solutions on MSC potential as cell-based therapeutic medicinal products.


Assuntos
Temperatura Baixa , Criopreservação/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Medicina Regenerativa , Sobrevivência Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...